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Unit – I –a : Vector Analysis



An introduction to vectors

Definition

A vector is an object that has both a magnitude and a direction. Geometrically, we 
can picture a vector as a directed line segment, whose length is the magnitude of 
the vector and with an arrow indicating the direction. The direction of the vector is 
from its tail to its head.



• Two vectors are the same if they have the same magnitude and direction. This means that if we
take a vector and translate it to a new position (without rotating it), then the vector we obtain
at the end of this process is the same vector we had in the beginning.

• Two examples of vectors are those that represent force and velocity. Both force and velocity
are in a particular direction. The magnitude of the vector would indicate the strength of the
force or the speed associated with the velocity.

• We denote vectors using boldface as in a or b. Especially when writing by hand where one
cannot easily write in boldface, people will sometimes denote vectors using arrows as in a⃗ or
b⃗ , or they use other markings. We won't need to use arrows here. We denote the magnitude
of the vector a by ∥a∥. When we want to refer to a number and stress that it is not a vector, we
can call the number a scalar. We will denote scalars with italics, as in a or b.



Operations on vectors

We can define a number of operations on vectors geometrically without reference to any
coordinate system. Here we define addition, subtraction, and multiplication by a scalar.

Addition of vectors:

Given two vectors a and b, we form their sum a+b, as follows. We translate the vector b until its
tail coincides with the head of a. (Recall such translation does not change a vector.) Then, the
directed line segment from the tail of a to the head of b is the vector a+b



Addition of vectors satisfies two important properties

• The commutative law, which states the order of addition doesn't matter:   a+b = b+a

This law is also called the parallelogram law, as illustrated in the below image. Two of the edges of 
the parallelogram define a+b, and the other pair of edges define b+a. But, both sums are equal to 
the same diagonal of the parallelogram.

• The associative law, which states that the sum of three vectors does not depend on which pair 
of vectors is added first:

(a+b)+c  =  a+(b+c)



Vector subtraction

• Before we define subtraction, we define the vector −a, 

which is the opposite of a. The vector −a is the vector 

with the same magnitude as a but that is pointed in 

the opposite direction.

• We define subtraction as addition with the opposite of a vector:    b−a = b+(−a)

Scalar multiplication

• Given a vector a and a real number (scalar) λ, we can form the vector λa as follows. If λ is
positive, then λa is the vector whose direction is the same as the direction of a and whose
length is λ times the length of a. In this case, multiplication by λ simply stretches (if λ>1) or
compresses (if 0<λ<1) the vector a.

• If, on the other hand, λ is negative, then we have to take the opposite of a before stretching or
compressing it.



Scalar multiplications satisfies many of the same properties as the usual multiplication

• s(a+b) = sa+sb (distributive law, form 1)

• (s+t)a = sa+ta (distributive law, form 2)

• 1a  = a

• (−1)a = −a

• 0a = 0

In the last formula, the zero on the left is the number 0, while the zero on the right is the vector 0, 
which is the unique vector whose length is zero.



Vector Multiplications:
The two different ways to multiply two vectors together: the dot product and the cross product.

The dot product

• The dot product between two vectors is based on the projection of one vector onto another.

• Let's imagine we have two vectors a and b, and we want to calculate how much of a is pointing in the same
direction as the vector b.

• We want a quantity that would be positive if the two vectors are pointing in similar directions, zero if they are

perpendicular, and negative if the two vectors are pointing in nearly opposite directions. We will define the dot

product between the vectors to capture these quantities.

• But first, notice that the question “how much of a is pointing in the same direction as the vector b” does not have
anything to do with the magnitude (or length) of b; it is based only on its direction.

• we get a nice symmetric definition for the dot product a⋅b

a⋅b = ∥a∥∥b∥ cosθ

• the dot product grows linearly with the length of both vectors

and is commutative, i.e., a⋅b = b⋅a

https://mathinsight.org/dot_product
https://mathinsight.org/cross_product


The cross product

• The cross product is defined only for three-dimensional vectors. If a and b are two three-dimensional vectors, then 

their cross product, written as a×b and pronounced “a cross b,” is another three-dimensional vector. We define this 

cross product vector a×b by the following three requirements:

1. a×b is a vector that is perpendicular to both a and b.

2. The magnitude (or length) of the vector a×b, written as ∥a×b∥, is the area of the parallelogram spanned by a and 
b (i.e. the parallelogram whose adjacent sides are the vectors a and b, as shown in below figure).

3. The direction of a×b is determined by the right-hand rule. (This means that if we curl the fingers of the right hand 
from a to b, then the thumb points in the direction of a×b.)

• we can calculate that the area of the parallelogram spanned by a and b is
∥a∥ ∥b∥ sinθ,

where θ is the angle between a and b. The figure shows the parallelogram as 
having a base of length ∥b∥ and perpendicular height  ∥a∥ sinθ.

• Important properties of the cross product : b×a = −a×b and a×a = 0,



Gradient

𝐺𝑟𝑎𝑑 ∅ = 𝛻∅ = Ƹ𝑖
𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
Φ grad Φ Is a vector quantity

 The gradient of a scalar point function Φ is defined as 𝛻∅ and is written as grad Φ.

 Φ(x, y, z) is a function of three independent variables and its total differential dΦ is given by,

𝑑∅ =
𝜕∅

𝜕𝑥
𝑑𝑥 +

𝜕∅

𝜕𝑦
𝑑𝑦 +

𝜕∅

𝜕𝑧
𝑑𝑧

Since 𝑟 = 𝑥 Ƹ𝑖 + y Ƹ𝑗 + z𝑘

d𝑟 = Ƹ𝑖dx + Ƹ𝑗dy + 𝑘dz

𝑑∅ = Ƹ𝑖
𝜕∅

𝜕𝑥
+ Ƹ𝑗

𝜕∅

𝜕𝑦
+ 𝑘

𝜕∅

𝜕𝑧
. Ƹ𝑖dx + Ƹ𝑗dy + 𝑘dz

= (𝛻∅). d𝑟

= 𝛻∅ 𝑑𝑟 cos θ Since θ is the angle between the direction of 𝛻∅ and 𝑑𝑟

If d𝑟 and 𝛻∅ are in the same direction, then θ = 0, thus cos θ = 1  

Therefore, 𝑑∅ = 𝛻∅ 𝑑𝑟 The value of 𝑑∅ is greatest when θ = 0

x

y

z

𝑟
∎

Ƹ𝑖

Ƹ𝑗

𝑘

P(x,y,z)



Physical interpretation:

 Gradient of scalar function Φ at any point P is a vector quantity whose magnitude represents the rate of change

of Φ with Direction along the normal to the surface defined by the equation Φ(x,y,z) = Constant and its direction

is along the normal to the surface.

 𝛻∅ =
𝜕∅

𝜕𝑛
ො𝑛 Increment of 𝑃

 Equation of surface Φ(x,y,z) = Constant

Normal vector to the surface = 𝛻∅

Unit normal vector to the surface (ො𝑛) =
𝛻∅

𝛻∅



 Prove that 𝜵𝒓𝒏 = n 𝒓𝒏−𝟐 𝒓

Solution: Position vector,   𝑟 = 𝑥 Ƹ𝑖 + y Ƹ𝑗 + z𝑘

𝑟2= 𝑥2+ 𝑦2+ 𝑧2

𝜵𝒓𝒏 = Ƹ𝑖
𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
𝒓𝒏

= Ƹ𝑖
𝜕𝒓𝒏

𝜕𝑥
+ Ƹ𝑗

𝜕𝒓𝒏

𝜕𝑦
+ 𝑘

𝜕𝒓𝒏

𝜕𝑧

= Ƹ𝑖 𝑛 𝒓𝒏−𝟏
𝜕𝒓

𝜕𝑥
+ 𝑗 𝑛 𝒓𝒏−𝟏

𝜕𝒓

𝜕𝑦
+ 𝑘𝑛 𝒓𝒏−𝟏

𝜕𝒓

𝜕𝑧

= 𝑛 𝒓𝒏−𝟏 Ƹ𝑖
𝜕𝒓

𝜕𝑥
+ 𝑗

𝜕𝒓

𝜕𝑦
+ 𝑘

𝜕𝒓

𝜕𝑧
----------------(1)

We have, 𝑟2= 𝑥2+ 𝑦2+ 𝑧2

Differentiating partially w.r.t.  x, y and z successively , we get



2𝑟
𝜕𝑟

𝜕𝑥
= 2x     =     

𝜕𝑟

𝜕𝑥
= 
𝑥

𝑟

2𝑟
𝜕𝑟

𝜕𝑦
= 2y     =     

𝜕𝑟

𝜕𝑦
= 
𝑦

𝑟

2𝑟
𝜕𝑟

𝜕𝑧
= 2z     =     

𝜕𝑟

𝜕𝑧
= 
𝑧

𝑟

----------------------(2)

Sub. Equ. (2)  in (1), we get, 

𝜵𝒓𝒏 = 𝑛 𝒓𝒏−𝟏 Ƹ𝑖
𝒙

𝑟
+ 𝑗

𝒚

𝑟
+ 𝑘

𝒛

𝑟

= 𝑛 𝒓𝒏−𝟐 Ƹ𝑖 𝑥 + 𝑗 𝑦 + 𝑘𝑧

𝜵𝒓𝒏 = 𝑛 𝒓𝒏−𝟐 𝑟 Hence proved.

1. Find the value of 𝜵𝟐𝒓.  Where 𝒓 is position vector.

2. If 𝒓 is position vector of a point, deduce the value of grad
𝟏

𝒓



The Divergence

 The divergence of a vector point function �⃗� is denoted by div 𝑭 and is defined by, 𝜵 ∙ 𝑭

If �⃗� = 𝐹1 Ƹ𝑖 +𝐹2 Ƹ𝑗 + 𝐹3 𝑘 then,

div �⃗�= 𝜵 ∙ 𝑭 = Ƹ𝑖
𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
𝑘

𝜕

𝜕𝑧
∙ 𝐹1 Ƹ𝑖 +𝐹2 Ƹ𝑗 + 𝐹3 𝑘

div �⃗�= 
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
(scalar value)

 If div �⃗�= 
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
= 0,  then �⃗� is called solenoidal vector. 

 That is entering fluid in any point which is equal to rate at which fluid is originating per unit volume.

 The divergence of a vector field simply measures how much the flow is expanding at a given point. It does not
indicate in which direction the expansion is occuring. Hence, the divergence is a scalar.



For the position vector 𝑟 = 𝑥 Ƹ𝑖 + y Ƹ𝑗 + z𝑘, show that 

(i) 𝑑𝑖𝑣 Ƹ𝑟 = 3

(ii) 𝑑𝑖𝑣
Ƹ𝑟

𝑟3
= 0

(iii) 𝑑𝑖𝑣 𝑟𝑛 Ƹ𝑟 = 3 + 𝑛 𝑟𝑛

(i) 𝑑𝑖𝑣 Ƹ𝑟 = 𝛻 ∙ Ƹ𝑟 = Ƹ𝑖
𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
∙ 𝑥 Ƹ𝑖 + y Ƹ𝑗 + z𝑘

= 
𝜕𝑥

𝜕𝑥
+

𝜕𝑦

𝜕𝑦
+

𝜕𝑧

𝜕𝑧
= 1 + 1 + 1 = 3

(ii) 𝑑𝑖𝑣
Ƹ𝑟

𝑟3
= 𝛻 ∙

Ƹ𝑟

𝑟3
= Ƹ𝑖

𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
∙

𝑥 Ƹ𝑖 + y Ƹ𝑗 + z𝑘
𝑟3

=      
𝜕

𝜕𝑥

𝑥

𝑟3
+

𝜕

𝜕𝑦

𝑦

𝑟3
+

𝜕

𝜕𝑧

𝑧

𝑟3



=
1

𝑟3
+ 𝑥 −3𝑟−4

𝜕𝑟

𝜕𝑥
+

1

𝑟3
+ 𝑦 −3𝑟−4

𝜕𝑟

𝜕𝑦
+

1

𝑟3
+ 𝑧 −3𝑟−4

𝜕𝑟

𝜕𝑧

=
3

𝑟3
−

3

𝑟4
𝑥
𝜕𝑟

𝜕𝑥
+ 𝑦

𝜕𝑟

𝜕𝑦
+ 𝑧

𝜕𝑟

𝜕𝑧

=
3

𝑟3
−

3

𝑟4
𝑥
𝑥

𝑟
+ 𝑦

𝑦

𝑟
+ 𝑧

𝑧

𝑟

=
3

𝑟3
−

3

𝑟4
𝑥2+ 𝑦2+ 𝑧2

𝑟

=
3

𝑟3
−

3

𝑟4
𝑟2

𝑟

=
3

𝑟3
−

3

𝑟3

𝑑𝑖𝑣
Ƹ𝑟

𝑟3
= 0 Hence proved 



The Curl

 The curl of a vector point function �⃗� is denoted by Curl�⃗� and defined by  𝛻 × �⃗�

If �⃗� = 𝐹1 Ƹ𝑖 +𝐹2 Ƹ𝑗 + 𝐹3 𝑘 then,

Curl�⃗� = 𝛻 × �⃗� = Ƹ𝑖
𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
𝑘

𝜕

𝜕𝑧
× 𝐹1 Ƹ𝑖 +𝐹2 Ƹ𝑗 + 𝐹3 𝑘

= 

Ƹ𝑖 Ƹ𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹1 𝐹2 𝐹3

= Vector value

 Any particle rotate in x, y, z axis, it’s angular velocity is represented by Curl𝐹. Angular velocity Ƹ𝑖 , Ƹ𝑗 , 𝑘 direction 

 Curl�⃗� represent the angular velocity at any point of the vector point function. If Curl�⃗�= 0, then there is no rotation is 
take place



Physical meaning of curl

 We know 𝑉 = 𝜔 × 𝑟 , where 𝜔 is the angular velocity, V is the linear velocity and 𝑟 is the position vector of a
point on the rotating body

𝑐𝑢𝑟𝑙 𝑉 = 𝛻 × 𝑉

= 𝛻 × 𝜔 × 𝑟
𝜔 = 𝜔1𝒊 + 𝜔2𝒋 + 𝜔3𝒌
𝑟 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌

= 𝛻 × 𝜔1𝒊 + 𝜔2𝒋 + 𝜔3𝒌 × (𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌)

= 𝛻 ×
𝐢 𝑗 𝑘
𝜔1 𝜔2 𝜔3

𝑥 𝑦 𝑧

= 𝛻 × 𝜔2𝑧 − 𝜔3𝑦 𝒊 − 𝜔1𝑧 − 𝜔3𝑥 𝒋 + 𝜔1𝑦 − 𝜔2𝑥 𝒌

= Ƹ𝑖
𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
× 𝜔2𝑧 − 𝜔3𝑦 𝒊 − 𝜔1𝑧 − 𝜔3𝑥 𝒋 + 𝜔1𝑦 − 𝜔2𝑥 𝒌



=

Ƹ𝑖 Ƹ𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜔2𝑧 − 𝜔3𝑦 𝜔1𝑧 − 𝜔3𝑥 𝜔1𝑦 − 𝜔2𝑥

= 𝜔1 + 𝜔1 𝒊 − −𝜔2 − 𝜔2 𝒋 + 𝜔3 + 𝜔3 𝒌

= 2 𝜔1𝒊 + 𝜔2𝒋 + 𝜔3𝒌

= 2𝜔

Curl V = 2𝜔 which shows that curl of a vector field is connected with rotational properties of the vector field and
justifies the name rotation used for curl.

If Curl F= 0 , the field F is termed irrotational



For the position vector 𝑟 = 𝑥 Ƹ𝑖 + y Ƹ𝑗 + z𝑘, show that 
(i) Curl Ƹ𝑟 = 0

(ii) Curl 
𝑘

𝑟
=

− Ƹ𝑖𝑦+ Ƹ𝑗𝑥

𝑟3

(iii) Curl 𝑟𝑛 Ƹ𝑟 = 0

Solution:

(i) Curl Ƹ𝑟 = 𝛻 × Ƹ𝑟 = Ƹ𝑖
𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
× 𝑥 Ƹ𝑖 + y Ƹ𝑗 + z𝑘

= 

Ƹ𝑖 Ƹ𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥 𝑦 𝑧

= Ƹ𝑖
𝜕𝑧

𝜕𝑦
−

𝜕𝑦

𝜕𝑧
− Ƹ𝑗

𝜕𝑧

𝜕𝑥
−

𝜕𝑥

𝜕𝑧
+ 𝑘

𝜕𝑦

𝜕𝑥
−

𝜕𝑥

𝜕𝑦

= 0



(ii) Curl 
𝑘

𝑟
= 𝛻 ×

𝑘

𝑟
= Ƹ𝑖

𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
×

𝑘

𝑟

= 

Ƹ𝑖 Ƹ𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

0 0
1

𝑟

= Ƹ𝑖
𝜕

𝜕𝑦

1

𝑟
− Ƹ𝑗

𝜕

𝜕𝑥

1

𝑟
+ 0

= Ƹ𝑖 −
1

𝑟2
𝜕𝑟

𝜕𝑦
− Ƹ𝑗 −

1

𝑟2
𝜕𝑟

𝜕𝑥

= Ƹ𝑖 −
1

𝑟2
𝑦

𝑟
− Ƹ𝑗 −

1

𝑟2
𝑥

𝑟

=
− Ƹ𝑖𝑦 + Ƹ𝑗𝑥

𝑟3
Hence proved



The Laplacian

 The divergence of the gradient of a scalar function is called the Laplacian.

That is, 𝛻 ∙ 𝛻𝐹 = 𝛻2𝐹 =
𝜕2𝐹

𝜕𝑥2
+ 
𝜕2𝐹

𝜕𝑦2
+ 
𝜕2𝐹

𝜕𝑧2

 The Laplacian finds application in the Schrodinger equation in Quantum mechanics.

 In electrostatics, it is a part of Laplace’s equation and Poisson’s equation for relating elective potential to charge
density



Orthogonal curvilinear coordinates system



Cartesian coordinates to Polar coordinates

𝑟 = 𝑥2 + 𝑦2

tan 𝜃 =
𝑦

𝑥

𝜃 = tan−1
𝑦

𝑥

𝑥, 𝑦 → 𝑥2 + 𝑦2, tan−1
𝑦

𝑥



Polar coordinate to Cartesian coordinate

cos 𝜃 =
𝑥

𝑟
→ 𝑥 = 𝑟 cos 𝜃

sin 𝜃 =
𝑦

𝑟
→ 𝑦 = 𝑟 sin 𝜃

𝑟, 𝜃 → 𝑟 cos 𝜃, 𝑟 sin 𝜃

Observation

Given : (x, y) ----------- r = f (x, y)  and  θ = g (x, y)

Given : (r, θ) ----------- x = f (r, θ) and  y = g (r, θ)



 Case (i) : If r is constant. Θ can vary any value then we will get
curve called θ curve and it is a circle

 Case (ii) : If θ is constant and r can vary any value then we will
get r curve. It is a straight line



 Why we study the Curvilinear coordinate system ?

Conditions:
𝑞1 = ∅1 𝑥, 𝑦, 𝑧
𝑞2 = ∅2 𝑥, 𝑦, 𝑧
𝑞3 = ∅3 𝑥, 𝑦, 𝑧

q1,q2,q3 are continuous
and differentiable

For each point in Cartesian coordinates
there will be exactly one point in
curvilinear coordinates system



Curvilinear coordinates

1. Cylindrical coordinates (ρ,Φ,z)                                         2.  Spherical coordinates (r,θ,Φ)

Now how to find coordinate surfaces and coordinate curves of curvilinear coordinates system

Cylindrical coordinates (ρ,Φ,z)



Cartesian coordinates to Cylindrical coordinates

𝜌 = 𝑥2 + 𝑦2

∅ = tan−1
𝑦

𝑥

Z = z

𝑥, 𝑦, 𝑧 → 𝑥2 + 𝑦2, tan−1
𝑦

𝑥
, 𝑧



Cylindrical coordinate to Cartesian coordinate system

cos∅ =
𝑥

𝜌
→ 𝑥 = 𝜌 cos∅

sin∅ =
𝑦

𝜌
→ 𝜌sin∅

Z = z

(ρ, Φ, z) → 𝜌 cos∅ , 𝜌 sin ∅, 𝑧

Therefore the values   → 𝜌 ≥ 0,  0 ≤ ∅ ≤ 2𝜋, z   ∈ −∞ ,∞



Coordinate Surfaces:

 If ρ = constant and Φ, z can take any value then it
will be a Cylinder co-oxial with z-axis

 If Φ = constant and ρ, z can take any value then it
will be a Plane through z-axis

 If z = constant and ρ, Φ can take any value then it
will be a Plane perpendicular to z-axis



Coordinate Curves:

 If ρ, Φ = constant and z can take any value, it will be
a Straight line parallel to z- axis (z- curve)

 If ρ, z = constant and Φ can take any value, it will be a
Circle (Φ - curve)

 If Φ, z = constant and ρ can take any value, it will be a
Straight line (ρ - curve)



Orthogonal Curvilinear Coordinates

 In Cartesian coordinates the position of a point P(x, y, z) is determined by
the intersection of three mutually perpendicular planes x= constant, y=
constant and z= constant

 Let the three new families of surfaces, described by q1 = constant, q2=
constant, q3= constant, intersect at point P.

 The values of q1, q2, q3 for the three surfaces intersecting at P are called the curvilinear coordinates of P. The
three new surfaces are then called the coordinate surfaces or curvilinear surfaces

 If the coordinates surfaces are mutually perpendicular at every point P(x, y, z), then the curvilinear coordinates
(q1, q2, q3) are said to be orthogonal curvilinear coordinates

 The coordinate surfaces intersect pairwise in three curves, called the coordinate lines or coordinate curves

 The coordinate axes are determined by the tangents to the coordinate lines at the intersection of the three
surfaces



 Obviously any given point P may be identified by curvilinear coordinates (q1, q2, q3) as well as by Cartesian
coordinates (x, y, z). This means that in principle we may write

x = x (q1, q2, q3)
y = y (q1, q2, q3)
z = z (q1, q2, q3)

-----------------------(1)

With inverses

q1= q1 (x, y, z)
q2= q2 (x, y, z) 
q3= q3 (x, y, z) 

-----------------------(2)

 With each family of surface qi = constant, we can associate a unit vector ෝ𝑢𝑖 normal to each surface qi = constant
and in the direction of increasing 𝑞 ሶ𝑟



𝑑𝑥 =
𝜕𝑥

𝜕𝑞1
𝑑𝑞1 +

𝜕𝑥

𝜕𝑞2
𝑑𝑞2 +

𝜕𝑥

𝜕𝑞3
𝑑𝑞3

𝑑𝑦 =
𝜕𝑦

𝜕𝑞1
𝑑𝑞1 +

𝜕𝑦

𝜕𝑞2
𝑑𝑞2 +

𝜕𝑦

𝜕𝑞3
𝑑𝑞3

𝑑𝑧 =
𝜕𝑧

𝜕𝑞1
𝑑𝑞1 +

𝜕𝑧

𝜕𝑞2
𝑑𝑞2 +

𝜕𝑧

𝜕𝑞3
𝑑𝑞3

-------------------------(3)

The partial differentiation of equation (1) yields

Hence the square of the distance between two neighbouring points is given by

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = σ𝑖𝑗 ℎ𝑖𝑗
2𝑑𝑞𝑖𝑑𝑞𝑗 (i, j = 1, 2, 3) ---------------------(4)

Where the coefficients ℎ𝑖𝑗
2 are given by 

ℎ𝑖𝑗
2 =

𝜕𝑥

𝜕𝑞𝑖

𝜕𝑥

𝜕𝑞𝑗
+
𝜕𝑦

𝜕𝑞𝑖

𝜕𝑦

𝜕𝑞𝑗
+

𝜕𝑧

𝜕𝑞𝑖

𝜕𝑧

𝜕𝑞𝑗
------------------------(5)



The most useful coordinate systems are orthogonal ones. i.e., the systems in which surfaces always intersect at right
angles. At this point we limit ourselves to orthogonal coordinate systems which means

ℎ𝑖𝑗 = 0, 𝑖 ≠ 𝑗 ------------------(6)

Now to simplify the notation, we write ℎ𝑖𝑗 = ℎ𝑖 so that equation (4) yields,

𝑑𝑠2 = ℎ1𝑑𝑞1
2 + ℎ2𝑑𝑞2

2 + ℎ3𝑑𝑞3
2 -------------------(7)

The distance between any two points on a coordinate line is called the line element. When the variation is limited to
any given 𝑞𝑖 holding the other q’s constant, then the line element, form equation (4), is given by

𝑑𝑠𝑖 = ℎ𝑖𝑑𝑞𝑖 ---------------------- (8)

From this equation it may be noted that three curvilinear coordinates q1, q2, q3 need not be lengths. The scale
factors ℎ𝑖 may depend on q’s and they may have dimensions. The product 𝒉𝒊𝒅𝒒𝒊 must have the dimensions of
length



From equation (8) we may develop the surface and volume elements. The three possible surface elements in 
orthogonal systems thus become

𝑑𝑆𝑖𝑗 = 𝑑𝑠𝑖𝑑𝑠𝑗 = ℎ𝑖ℎ𝑗𝑑𝑞𝑖𝑑𝑞𝑗 𝑖, 𝑗 = 1,2,3; 𝑖 ≠ 𝑗 -------------- (9)

and the volume element

𝑑𝜏 = 𝑑𝑠1𝑑𝑠2𝑑𝑠3 = ℎ1ℎ2ℎ3 𝑑𝑞1𝑑𝑞2𝑑𝑞3 ----------- (10)

From the above equation, ℎ1ℎ2ℎ3 are scaling factor and 𝑑𝑞1𝑑𝑞2𝑑𝑞3 are differential of the elements



Differential operators in terms of orthogonal curvilinear coordinates

 Consider three mutually perpendicular coordinate surfaces described by q1 = constant, q2= constant, q3=
constant.

 Let Ψ(q1, q2, q3) be a scalar function and V be a vector function with components V1, V2, V3 in the three
directions in which q1, q2, q3 increase.

 If ෞ𝑢1, ෞ𝑢2, ෞ𝑢3 are unit vectors along the directions of increasing q1, q2, q3 respectively, then vector V in terms of
orthogonal curvilinear coordinates may be written as

V = ෞ𝑢1𝑉1 + ෞ𝑢2V2 + ෞ𝑢3V3

The Gradient

 The gradient of a scalar function Ψ is a vector whose magnitude and direction give the maximum space rate of
change of scalar function Ψ . From this interpretation the component of 𝛻 Ψ q1, q2, q3 in the direction normal
to the surface q1 = constant and hence in the direction of q1 is



𝛻 Ψ 1 = lim
𝛿𝑠1→0

𝛿Ψ

𝛿𝑠1
=

𝜕Ψ

𝜕𝑠1
=

𝜕Ψ

ℎ1𝜕𝑞1
=

1

ℎ1

𝜕Ψ

𝜕𝑞1
−−−−−−−−− −(1)

Where 𝛿𝑠1=ℎ1𝜕𝑞1is the differential length in the direction of increasing q1 and 𝜕Ψ represents an increase in Ψ on
travelling a distance 𝛿𝑠1 in the limit 𝛿𝑠1 → 0.

By repeating equation (1) for q2 and q3 , we get

𝛻 Ψ 2 =
1

ℎ2

𝜕Ψ

𝜕𝑞2
−−−−−−− −(2)

𝛻 Ψ 3 =
1

ℎ3

𝜕Ψ

𝜕𝑞3
−−−−−−− −(3)

Adding equations (1), (2) and (3) vectorially, the gradient of scalar function Ψ in orthogonal curvilinear coordinates
becomes



grad Ψ =     𝛻Ψ =
ෞ𝑢1

ℎ1

𝜕Ψ
𝜕𝑞1

+
ෞ𝑢2

ℎ2

𝜕Ψ

𝜕𝑞2
+

ෞ𝑢3

ℎ3

𝜕Ψ

𝜕𝑞3

Thus the operator grad in orthogonal curvilinear coordinates is,  

grad Ψ =     𝛻Ψ =
ෞ𝑢1

ℎ1

𝜕

𝜕𝑞1
+

ෞ𝑢2

ℎ2

𝜕

𝜕𝑞2
+

ෞ𝑢3

ℎ3

𝜕

𝜕𝑞3
Ψ

In Cartesian coordinates, 

𝐺𝑟𝑎𝑑 Ψ = 𝛻Ψ = Ƹ𝑖
𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
Ψ

The divergence  in orthogonal curvilinear coordinates can be written as, 

The divergence 

div V = 𝛻 .V =  
1

ℎ1ℎ2ℎ3

𝜕 𝑉1ℎ2ℎ3

𝜕𝑞1
+

𝜕 𝑉2ℎ3ℎ1

𝜕𝑞2
+

𝜕 𝑉3ℎ1ℎ2

𝜕𝑞3

In Cartesian coordinates,

div 𝑉= 
𝜕𝑉1

𝜕𝑥
+

𝜕𝑉2

𝜕𝑦
+

𝜕𝑉3

𝜕𝑧



The curl in orthogonal curvilinear coordinates can be written as,

The curl

Curl 𝑉 = 𝛻 × 𝑉 = 
1

ℎ1ℎ2ℎ3

ℎ1ෞ𝑢1 ℎ2ෞ𝑢2 ℎ3ෞ𝑢3
𝜕

𝜕𝑞1

𝜕

𝜕𝑞2

𝜕

𝜕𝑞3

𝑉1ℎ1 𝑉2ℎ2 𝑉3ℎ3

In Cartesian coordinates,

Curl𝑉 = 𝛻 × 𝑉 = 

Ƹ𝑖 Ƹ𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑉1 𝑉2 𝑉3

The Laplacian

The Laplacian may be obtained be combining gradient and divergence

𝛻2Ψ = 𝛻 ∙ 𝛻Ψ =
1

ℎ1ℎ2ℎ3

𝜕

𝜕𝑞1

ℎ2ℎ3
ℎ1

𝜕Ψ

𝜕𝑞1
+

𝜕

𝜕𝑞2

ℎ3ℎ1
ℎ2

𝜕Ψ

𝜕𝑞2
+

𝜕

𝜕𝑞3

ℎ1ℎ2
ℎ3

𝜕Ψ

𝜕𝑞3

In Cartesian coordinates,

𝛻 ∙ 𝛻Ψ = 𝛻2Ψ =
𝜕2Ψ

𝜕𝑥2
+ 
𝜕2Ψ

𝜕𝑦2
+ 
𝜕2Ψ

𝜕𝑧2



Spherical polar coordinates

Cartesian to Spherical coordinates

𝑟 = 𝑥2 + 𝑦2 + 𝑧2

tan∅ =
𝑦

𝑥
→ ∅ = tan−1 ൗ𝑦 𝑥

cos 𝜃 =
𝑧

𝑟
→ 𝜃 = cos−1 Τ𝑧 𝑟

(x, y, z) → ( 𝑥2 + 𝑦2 + 𝑧2, tan−1 Τ𝑦 𝑥 , cos−1 Τ𝑧 𝑟 ) 



Spherical to Cartesian coordinates

sin ∅ =
𝑦

𝐴
→ 𝑦 = 𝐴 sin∅

cos ∅ =
𝑥

𝐴
→ 𝑥 = 𝐴 cos ∅

cos 𝜃 =
𝑧

𝑟
→ 𝑧 = 𝑟 cos 𝜃

sin 𝜃 =
𝐴

𝑟
→ 𝐴 = 𝑟 sin 𝜃

Therefore, 𝑥 = 𝑟 sin 𝜃 cos ∅

𝑦 = 𝑟 sin 𝜃 sin ∅

𝑧 = 𝑟 cos 𝜃

(r,Φ, θ) → 𝑟 sin 𝜃 cos ∅ , 𝑟 sin 𝜃 sin ∅ , 𝑟 cos 𝜃



Spherical polar coordinates (r, θ ,Φ) and differential operators:

The spherical polar coordinate system consists of 

 Concentric spheres about the origin O , 𝑟 = 𝑥2 + 𝑦2 + 𝑧2

 Right circular cones about Z-axis with the vertices at the

origin O, cos 𝜃 =
𝑧

𝑟
→ 𝜃 = cos−1 Τ𝑧 𝑟

 Half planes through the Z-axis, tan∅ =
𝑦

𝑥
→ ∅ = tan−1 Τ𝑦 𝑥

The transformation between rectangular coordinates (x, y, z) and spherical coordinates (r, θ ,Φ) are given by  

𝑥 = 𝑟 sin 𝜃 cos ∅

𝑦 = 𝑟 sin 𝜃 sin∅ −−−−−−−−− −(1)

𝑧 = 𝑟 cos 𝜃



We have,              𝑑𝑥 =
𝜕𝑥

𝜕𝑟
𝑑𝑟 +

𝜕𝑥

𝜕𝜃
𝑑𝜃 +

𝜕𝑥

𝜕∅
𝑑∅

𝑑𝑥 = sin 𝜃 cos ∅ 𝑑𝑟 + 𝑟 cos 𝜃 cos ∅ 𝑑𝜃 − 𝑟 sin 𝜃 sin∅ 𝑑∅ ----------------(2)

Similarly,  𝑑𝑦 = sin 𝜃 sin ∅ 𝑑𝑟 + 𝑟 cos 𝜃 sin ∅ 𝑑𝜃 + 𝑟 sin 𝜃 cos ∅ 𝑑∅ −−−−− −(3)

𝑑𝑧 = cos 𝜃 𝑑𝑟 − 𝑟 sin 𝜃 𝑑𝜃 −−−−−− −(4)

We know that the line element ds in Cartesian coordinates is given by

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 −−−−−−− −(5)

Substituting equations (2), (3) and (4) in equation (5) , the expression for the line element in spherical polar
coordinates becomes



𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑∅2 −−−−−−−−− −(6)

We know that,  𝑑𝑠2 = ℎ1𝑑𝑞1
2 + ℎ2𝑑𝑞2

2 + ℎ3𝑑𝑞3
2 -------------------(7)

Comparing equ.(6) with (7),  we get

h1 = 1, h2 = r, h3 = r sin θ

q1 = r, q2 = θ, q3 = Φ -----------------------(8)

Using this, now we can write differential operators in spherical polar coordinates



Differential operators in spherical polar coordinates

Gradient :
In orthogonal curvilinear coordinates grad Ψ is

grad Ψ =     𝛻Ψ =
ෞ𝑢1

ℎ1

𝜕Ψ
𝜕𝑞1

+
ෞ𝑢2

ℎ2

𝜕Ψ

𝜕𝑞2
+

ෞ𝑢3

ℎ3

𝜕Ψ

𝜕𝑞3

If ෞ𝑢𝑟 , ෞ𝑢𝜃 , ෞ𝑢∅ are unit vectors along r, θ ,Φ axes respectively, then using equation (8) , grad Ψi in spherical polar
coordinates may expressed as

grad Ψ =
𝜕Ψ

𝜕r
ෝur +

1

r

𝜕Ψ

𝜕θ
ෞuθ +

1

r sin θ

𝜕Ψ

𝜕∅
ෞu∅

Or        grad = 𝛻 =
𝜕

𝜕r
ෝur +

1

r

𝜕

𝜕θ
ෞuθ +

1

r sin θ

𝜕

𝜕∅
ෞu∅

h1 = 1, h2 = r, h3 = r sin θ

q1 = r, q2 = θ, q3 = Φ



Divergence :
In orthogonal curvilinear coordinates div V is

div V = 𝛻 ∙ V =  
1

ℎ1ℎ2ℎ3

𝜕 𝑉1ℎ2ℎ3

𝜕𝑞1
+

𝜕 𝑉2ℎ3ℎ1

𝜕𝑞2
+

𝜕 𝑉3ℎ1ℎ2

𝜕𝑞3

Using equation (8) , div V in spherical polar coordinates may expressed as

𝑑𝑖𝑣 𝑽 =
1

𝑟2 sin 𝜃

𝜕

𝜕𝑟
𝑟2 sin 𝜃 𝑉𝑟 +

𝜕

𝜕𝜃
𝑟 sin 𝜃 𝑉𝜃 +

𝜕

𝜕∅
𝑟 𝑉∅

𝑑𝑖𝑣 𝑽 =
1

𝑟2
𝜕

𝜕𝑟
𝑟2 𝑉𝑟 +

1

𝑟 sin 𝜃

𝜕

𝜕𝜃
sin 𝜃 𝑉𝜃 +

1

𝑟 sin 𝜃

𝜕𝑉∅
𝜕∅

h1 = 1, h2 = r, h3 = r sin θ

q1 = r, q2 = θ, q3 = Φ



Curl : In orthogonal curvilinear coordinates Curl V is

Curl 𝑉 = 𝛻 × 𝑉 = 
1

ℎ1ℎ2ℎ3

ℎ1ෞ𝑢1 ℎ2ෞ𝑢2 ℎ3ෞ𝑢3
𝜕

𝜕𝑞1

𝜕

𝜕𝑞2

𝜕

𝜕𝑞3

𝑉1ℎ1 𝑉2ℎ2 𝑉3ℎ3

Using equation (8) , Curl V in spherical polar coordinates may expressed as

Curl 𝑉 = 𝛻 × 𝑉 = 
1

𝑟2 sin 𝜃

ෞ𝑢𝑟 𝑟ෞ𝑢𝜃 𝑟 sin 𝜃 ෞ𝑢∅
𝜕

𝜕𝑟

𝜕

𝜕𝜃

𝜕

𝜕∅

𝑉𝑟 𝑟𝑉𝜃 𝑟 sin 𝜃 𝑉∅

Curl 𝑉 = 
1

𝑟 sin 𝜃

𝜕

𝜕𝜃
sin 𝜃 𝑉∅ −

𝜕𝑉𝜃

𝜕∅
ෞ𝑢𝑟 +

1

𝑟

1

sin 𝜃

𝜕𝑉𝑟

𝜕∅
−

𝜕 𝑟𝑉∅

𝜕𝑟
ෞ𝑢𝜃 +

1

𝑟

𝜕

𝜕𝑟
𝑟𝑉𝜃 −

𝜕𝑉𝑟

𝜕𝜃
ෞ𝑢∅

h1 = 1, h2 = r, h3 = r sin θ

q1 = r, q2 = θ, q3 = Φ



Laplacian :

In orthogonal curvilinear coordinates 𝛻2Ψ is

𝛻2Ψ = 𝛻 ∙ 𝛻Ψ =
1

ℎ1ℎ2ℎ3

𝜕

𝜕𝑞1

ℎ2ℎ3
ℎ1

𝜕Ψ

𝜕𝑞1
+

𝜕

𝜕𝑞2

ℎ3ℎ1
ℎ2

𝜕Ψ

𝜕𝑞2
+

𝜕

𝜕𝑞3

ℎ1ℎ2
ℎ3

𝜕Ψ

𝜕𝑞3

Using equation (8) , 𝛻2Ψ in spherical polar coordinates may expressed as

𝛻2Ψ =
1

𝑟2 sin 𝜃

𝜕

𝜕𝑟
𝑟2 sin 𝜃

𝜕Ψ

𝜕𝑟
+

𝜕

𝜕𝜃
sin 𝜃

𝜕Ψ

𝜕𝜃
+

𝜕

𝜕∅

1

sin 𝜃

𝜕Ψ

𝜕∅

𝛻2Ψ =
1

𝑟2
𝜕

𝜕𝑟
𝑟2

𝜕Ψ

𝜕𝑟
+

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕Ψ

𝜕𝜃
+

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2Ψ

𝜕∅2

h1 = 1, h2 = r, h3 = r sin θ

q1 = r, q2 = θ, q3 = Φ



Cylindrical coordinates and differential operators :

The cylindrical coordinate system consists of :

 Right circular cylinders having Z-axis as common, which form 
families of concentric circles about the origin O in X-Y plane 

r = 𝑥2 + 𝑦2

 Half planes through to Z-axis, 𝜃 = tan−1
𝑦

𝑥

 Planes parallel to X-Y plane, Z = z

Thus the position of point P in cylindrical coordinates is specified by (r, θ ,z) where ‘r’ is the distance in the X-Y
plane from the origin to the cylinder on which the point P lies, ‘θ’ is angle makes from positive X-axis in X-Y plane
and ‘z’ is the distance from the X-Y plane to the point P



From Figure, the transformations between rectangular coordinates (x,y,z) and cylindrical coordinates (r, θ ,z) are 
given by

cos 𝜃 =
𝑥

𝑟
→ 𝑥 = 𝑟 cos 𝜃

sin 𝜃 =
𝑦

𝑟
→ 𝑦 = 𝑟 sin 𝜃 -------(1)

Z  =  z      

We have,              𝑑𝑥 =
𝜕𝑥

𝜕𝑟
𝑑𝑟 +

𝜕𝑥

𝜕𝜃
𝑑𝜃

dx = cos 𝜃 𝑑𝑟 − 𝑟 sin 𝜃 𝑑𝜃

Similarly,             𝑑𝑦 = sin 𝜃 𝑑𝑟 + 𝑟 cos 𝜃 𝑑𝜃 𝑎𝑛𝑑 𝑑𝑍 = 𝑑𝑧 −−−− −(2)

Therefore from equ (1)

We know that the line element ds in Cartesian coordinates is given by

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 −−−−−−− −(3)



Substituting equation (2) in equation (3) , the expression for the line element in cylindrical coordinates becomes

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑑𝑧2 ----------------- (4)

We know that, 𝑑𝑠2 = ℎ1𝑑𝑞1
2 + ℎ2𝑑𝑞2

2 + ℎ3𝑑𝑞3
2 -------------------(5)

Comparing equ. (4) with (5), we get

h1 = 1, h2 = r, h3 = 1

q1 = r, q2 = θ, q3 = z               ------------------(6) 

Now we shall write differential operators in cylindrical coordinates



differential operators :

In orthogonal curvilinear coordinates grad Ψ is

grad Ψ =     𝛻Ψ =
ෞ𝑢1

ℎ1

𝜕Ψ
𝜕𝑞1

+
ෞ𝑢2

ℎ2

𝜕Ψ

𝜕𝑞2
+

ෞ𝑢3

ℎ3

𝜕Ψ

𝜕𝑞3

If ෞ𝑢𝑟 , ෞ𝑢𝜃 , ෞ𝑢𝑧 are unit vectors along r, θ ,z axes respectively, then using equation (6) , grad Ψi in cylindrical
coordinates may expressed as

grad Ψ =
𝜕Ψ

𝜕r
ෝur +

1

r

𝜕Ψ

𝜕θ
ෞuθ +

𝜕Ψ

𝜕∅
ෞuz

h1 = 1, h2 = r, h3 = 1

q1 = r, q2 = θ, q3 = z



Divergence :

In orthogonal curvilinear coordinates div V is

div V = 𝛻 ∙ V =  
1

ℎ1ℎ2ℎ3

𝜕 𝑉1ℎ2ℎ3

𝜕𝑞1
+

𝜕 𝑉2ℎ3ℎ1

𝜕𝑞2
+

𝜕 𝑉3ℎ1ℎ2

𝜕𝑞3

Using equation (6) , div V in cylindrical coordinates may expressed as h1 = 1, h2 = r, h3 = 1

q1 = r, q2 = θ, q3 = z

𝑑𝑖𝑣 𝑽 =
1

𝑟

𝜕

𝜕𝑟
𝑟 𝑉𝑟 +

1

𝑟

𝜕𝑉𝜃
𝜕𝜃

+
𝜕𝑉𝑧
𝜕𝑧



Curl :

In orthogonal curvilinear coordinates Curl V is

Curl 𝑉 = 𝛻 × 𝑉 = 
1

ℎ1ℎ2ℎ3

ℎ1ෞ𝑢1 ℎ2ෞ𝑢2 ℎ3ෞ𝑢3
𝜕

𝜕𝑞1

𝜕

𝜕𝑞2

𝜕

𝜕𝑞3

𝑉1ℎ1 𝑉2ℎ2 𝑉3ℎ3

Using equation (6) , Curl V in cylindrical coordinates may expressed as

Curl 𝑉 = 𝛻 × 𝑉 = 
1

𝑟

ෞ𝑢𝑟 𝑟ෞ𝑢𝜃 ෞ𝑢𝑧
𝜕

𝜕𝑟

𝜕

𝜕𝜃

𝜕

𝜕𝑧

𝑉𝑟 𝑟𝑉𝜃 𝑉𝑧

h1 = 1, h2 = r, h3 = 1

q1 = r, q2 = θ, q3 = z

Curl 𝑉 = 
1

𝑟

𝜕𝑉𝑧

𝜕𝜃
−

𝜕𝑉𝜃

𝜕𝑧
ෞ𝑢𝑟 +

𝜕𝑉𝑟

𝜕𝑧
−

𝜕𝑉𝑧

𝜕𝑟
ෞ𝑢𝜃 +

1

𝑟

𝜕

𝜕𝑟
𝑟𝑉𝜃 −

𝜕𝑉𝑟

𝜕𝜃
ෞ𝑢𝑧



Laplacian :

In orthogonal curvilinear coordinates 𝛻2Ψ is

𝛻2Ψ = 𝛻 ∙ 𝛻Ψ =
1

ℎ1ℎ2ℎ3

𝜕

𝜕𝑞1

ℎ2ℎ3
ℎ1

𝜕Ψ

𝜕𝑞1
+

𝜕

𝜕𝑞2

ℎ3ℎ1
ℎ2

𝜕Ψ

𝜕𝑞2
+

𝜕

𝜕𝑞3

ℎ1ℎ2
ℎ3

𝜕Ψ

𝜕𝑞3

Using equation (6) , 𝛻2Ψ in cylindrical coordinates may expressed as

𝛻2Ψ =
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕Ψ

𝜕𝑟
+

𝜕

𝜕𝜃

1

𝑟

𝜕Ψ

𝜕𝜃
+

𝜕

𝜕𝑧
𝑟
𝜕Ψ

𝜕𝑧

h1 = 1, h2 = r, h3 = 1

q1 = r, q2 = θ, q3 = z

𝛻2Ψ =
𝜕2Ψ

𝜕𝑟2
+
1

𝑟

𝜕Ψ

𝜕𝑟
+

1

𝑟2
𝜕2Ψ

𝜕𝜃2
+
𝜕2Ψ

𝜕𝑧2


